Complete and sufficient statistics and perfect families in orthogonal and error orthogonal normal models
نویسندگان
چکیده
منابع مشابه
Commutative orthogonal block structure and error orthogonal models
A model has orthogonal block structure, OBS, if it has variance-covariance matrix that is a linear combination of known pairwise orthogonal orthogonal projection matrices that sum to the identity matrix. These models were introduced by Nelder is 1965, and continue to play an important part in randomized block designs. Two important types of OBS are related, and necessary and sufficient conditio...
متن کاملEla Commutative Orthogonal Block Structure and Error Orthogonal Models
A model has orthogonal block structure, OBS, if it has variance-covariance matrix that is a linear combination of known pairwise orthogonal orthogonal projection matrices that sum to the identity matrix. These models were introduced by Nelder is 1965, and continue to play an important part in randomized block designs. Two important types of OBS are related, and necessary and sufficient conditio...
متن کاملPerfect difference families and related variable-weight optical orthogonal codes
Perfect (v,K, 1) difference families ((v,K, 1)-PDF in short, and (v, k, 1)-PDF when K = {k}) were introduced by Ge et al. for their useful application to the construction of properly centered permutations, which can be used to construct new radar arrays. Some works had been done on the existences of (v, k, 1)-PDFs, while little is known when |K| ≥ 2 except for partial results by Ge et al. In 19...
متن کاملOrthogonal metric space and convex contractions
In this paper, generalized convex contractions on orthogonal metric spaces are stablished in whath might be called their definitive versions. Also, we show that there are examples which show that our main theorems are genuine generalizations of Theorem 3.1 and 3.2 of [M.A. Miandaragh, M. Postolache and S. Rezapour, {it Approximate fixed points of generalized convex contractions}, Fixed Poi...
متن کاملORTHOGONAL ZERO INTERPOLANTS AND APPLICATIONS
Orthogonal zero interpolants (OZI) are polynomials which interpolate the “zero-function” at a finite number of pre-assigned nodes and satisfy orthogonality condition. OZI’s can be constructed by the 3-term recurrence relation. These interpolants are found useful in the solution of constrained approximation problems and in the structure of Gauss-type quadrature rules. We present some theoretical...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Open Mathematics
سال: 2015
ISSN: 2391-5455
DOI: 10.1515/math-2015-0009